Semantic-Based Keyword Recovery Function for Keyword Extraction System

نویسندگان

  • Rachada Kongkachandra
  • Kosin Chamnongthai
چکیده

The goal of implementing a keyword extraction system is to increase as near as 100% of precision and recall. These values are affected by the amount of extracted keywords. There are two groups of errors happened i.e. false-rejected and false-accepted keywords. To improve the performance of the system, false-rejected keywords should be recovered and the false-accepted keywords should be reduced. In this paper, we enhance the conventional keyword extraction systems by attaching the keyword recovery function. This function recovers the previously false-rejected keywords by comparing their semantic information with the contents of each relevant document. The function is automated in three processes i.e. Domain Identification, Knowledge Base Generation and Keyword Determination. Domain identification process identifies domain of interest by searching domains from domain knowledge base by using extracted keywords.The most general domains are selected and then used subsequently. To recover the false-rejected keywords, we match them with keywords in the identified domain within the domain knowledge base rely on their semantics by keyword determination process. To semantically recover keywords, definitions of false-reject keywords and domain knowledge base are previously represented in term of conceptual graph by knowledge base generator process. To evaluate the performance of the proposed function, EXTRACTOR, KEA and our keyword-database-mapping based keyword extractor are compared. The experiments were performed in two modes i.e. training and recovering. In training mode, we use four glossaries from the Internet and 60 articles from the summary sections of IEICE transaction. While in the recovering mode, 200 texts from three resources i.e. summary section of 15 chapters in a computer textbook and articles from IEICE and ACM transactions are used. The experimental results revealed that our proposed function improves the precision and recall rates of the conventional keyword extraction systems approximately 3-5% of precision and 6-10% of recall, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Query Architecture Expansion in Web Using Fuzzy Multi Domain Ontology

Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...

متن کامل

Micro-blog Keyword Extraction Method Based on Graph Model and Semantic Space

There have been many domain-specific keyword extraction researches, but micro-blogoriented keyword extraction is just beginning. This paper researches into the keyword extraction from Chinese micro-blog. Taking the characteristics of micro-blog into account, such as short, topic divergence, etc., we propose a Chinese micro-blog keyword extraction method based on the combination of multi feature...

متن کامل

Finding User Semantics on the Web using Word Co-occurrence Information

With the currently growing interest in the Semantic Web, describing user semantics to model users and their social relationships is coming to play an important role. This paper proposes a novel keyword extraction method to extract user semantics from the Web. Based on co-occurrence information of words, the proposed method extracts relevant keywords depending on the context of a person. Our eva...

متن کامل

Keyword Extraction from the Web for FOAF Metadata

With the currently growing interest in the Semantic Web, metadata is becoming to play an important role in the Web. As one of forthcoming metadata standards for the Semantic Web, FOAF defines an RDF vocabulary for expressing metadata about people and the relation between people. In this paper we propose the novel keyword extraction method to extract FOAF metadata from the Web. The proposed meth...

متن کامل

MIKE: An Interactive Microblogging Keyword Extractor using Contextual Semantic Smoothing

Social media, such as tweets on Twitter and Short Message Service (SMS) messages on cellular networks, are short-length textual documents (short texts or microblog posts) exchanged among users on the Web and/or their mobile devices. Automatic keyword extraction from short texts can be applied in online applications such as tag recommendation and contextual advertising. In this paper we present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006